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ABSTRACT

It is shown that if the knot sequence t: -(t) satisfies

(i) For some m e 1, 3-/51,

-1 ti+r+1 - i+r t i+r+1 - i+r
m Jim inf-- -t s-

r i i+1 i r i i+1 -ti

and
ti+ -t i

(ii) m: sup <-t ij• tj+ -t

then for any given bounded sequence y e m(Z) there exists exactly one cubic

spline s with knots ti such that

s(ti) Yi , for all i Q Z
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SIGNIFICANCE AND EXPLANATION

>Cubic spline interpolation provides a good and handy method to

approximate a given function or to fit a given set of points. However, such

an interpolation process does not always converge. It is known that the local

mesh ratio (that of the lengths of two consecutive intervals) is less than

3+r5, the interpolation process works for any given bounded data.

This paper continues such investigation. It is shown that the above

restriction on the knots may be relaxed. Thus, for a wider class of knot

sequences, the cubic spline interpol~tion can be still applied. Hopefully,

this would make such interpolation process more feasible in practice.
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ON A CONJECTURE OF C. A. MICCHELLI C)NCERNING CIIC SPLINE

INTERPOLATION AT A BIINFINITE KNOT SEQUENCE

Rong-qing Jia

1. Introduction. Let t: = (t.) be a biinfinite, strictly increasing sequence,

set

t lim t.
t. +t .

let k be an integer, k > 2, ana denote by $k,t the collection of spline functions of

degrees < k with knot sequence !. Explicitly, Xk,t consists of exactly those k - 2

times continuously differentiable functions on

I (tmt)

which, on each interval (ti,ti+i), coincide with some polynomial of deqree < k. Let

k * ~k,t ~mI
i.e., the normed linear spdce of splines for which

is, := sup Is(t)I
tGI

is finite. We are interested in the

Bounded Interpolation Problem (B.I.P.). To construct, for given y S m(Z), some

SfM$ k,t for which

(1) sit = y

We will say that the b.I.P. is correct (for the given knot sequence t) if it has exactly

one solution for each y e m(S).

In case k = 4 (cubic spline interpolation), de boor [2] showed that if the local

mesh ratio

At.

mt :- sup --. I(with At. t.+ - ti
Ii-iI 1 - 1 

t +

is less thdIai -j--- then the H.I.P. is correct. A similar result was also obtained

independently by Zmatrakov (71. The Iasic idea of (21 was the exponential decay law, which
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could be traced back to (1]. This idea was developed in de Boor (3) and Hicchelli (61.

For cubic spline interpolation, Micchelli further raised the following conjecture (see [b);

p. 236).

Conjecture. It 1 1

(2 -1 r r
(2) i lira inf (At i+r/Ati 1 ) 4 yi sup (At i+r/At 4 m

r i r i

for some m 6 [1, -r), then the H.I.P. is correct for k = 4.

In hindsight, it is easy to see that this conjecture is faulty. This can be clarified

by the following

Example. Write hi := ti+1 - ti . Let

to 0
h 1 ) -),2n+1 for integer n

2n 2 h 2n+1 2 0

h_- h hi  for integer i 0.

Then I 1

h. - h. -

2 lim inf ( I+r ii sup ( i+_ r• 2,
r i hi- r i hi-i

but
ti+ - t.

m t i+1 1

t SUp -t
+i-j 14 tj+1

Let m+ and m- have the same meaning as in [41. Since the knot sequence t is

symmetric with respect to the origin, we must have m = m-. If this B.I.P. is correct,

then (41 tells us that mt < , which is a contradiction.

The above example suggests to us that the condition mt < - should be added to the
I

assumption. Thus we will prove the following

Theorem 1. If a knot sequence t satisfies (2) with I m < (3+/S)/2 and

(3) t <4
t

then the .I.P. is correct for k = 4.

Remark. This theorem covers de Boor's results for cubic splines with bounded global

mesh ratio or with local mesh ratio < 4 5 (see 121 and 131).
2
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2. The basic formulae for cubic spline interroation, For a given knot sequence t,

let

(4) hi t. t i , t i.1" i . h i+1i/(h i + hi/(hi +hi+1 ), 1 G

It a G 4,t satisfies (1) for some y 0 m(), then

Yi - y '+I " Yi

(5) A s(ti I ) + 2s'(t.) + 1 s'(t i+ ) 3X h + 3Pi  h

Moreover, it is easy to check that

(x-t -1)(ti-x)2 (x-tI ) 2(t -x) y 1 + yi
s(x) 2 s'(t i-1) - h2 s' (ti) + 2

1 h.

+ ti-i + ti 2 2 Y i-1)i(ti-x) + 4(t.-x)(x-t -s ) + (x-ti -) I- hi
hi

for x Q [ti 1 .ti I

Let

2 for j - i

(7) Vi & 2, Afi, ) : for j - i-I

Pi for j = i+1
0 for j 6 Z\(i-l,i,i+l)

Then A is a tri-diagonal Z x S-matrix. For any 0 6 rn(S) we have

Vi e , IA 6i.1 + 20i + 15 .i+1 A 61 + 2101. + 1 -= 3101,

showing IAI 4 3. Here, We view A as a mapping from m(z) to m(S). Furthermore,

Vi 6 Z, 0A1 -1._ + 20i + PiB 0 1 
+ 218il I - X 1 _1 -101 - 216i1 - I1.

Hence 1A0le, ) sup(21 iI - 101.1 - £61.. This shows that A-
1  

exists and IA-l 1 1.
ieU

3. The exponential decal. The following lemma plays an essential role in this paper.

Lemma 1. For any knot sequence t,

(b) IA- (j,i)l 2 vi, j 6 z

and

(9) A-l(j,i) -l(+l,i) < 0, Vi, j 1 a

! . I - - 3 -



Moreover, it t satisfies th. followinq condition: for some integer r A 0

(10) h /h 1'-j whenever li-ji • r

then

(11) JA- (j,i)) 4 (1 + Mo1 + A + mO + m2)-i-l whenever Ii-ji r
00 0

Proof. For simplicity we fix i and write b. :- A-(j,i). ince IA- I 4 3,

b(l) 6 m(Z). By AA
1 

- 1 we have

I for j i(12) A b j1+ 2b . + U ib. j+ -j 0fo

We claim that

(13) lb I lb1+I for all j < i

If not, then there exists ] 0 < i such that lb JO I > lb,0+I. From (12) we have

(b.jo-1  = -(2bjo + i0 bj + 1 )/A- I> (21bj I - job+1 ) )/Aj0

(2 - UA )I b 1/) 0 lb. I (1 + A. )/A a- 21b I

'a jo 1 0 o jo ju 30

Then by induction on j, we can easily show that lb.11 • 
21b l for all j 4 j0. Hence25 -u'5 0j

lb liA alo I for j < jO. This contradicts the fact b 2 m(Z). Similar to (13), the

following also holds:

(13') Ibjl 1 Ib4.j_iI for all j > i

Now (12) and (13) yield that

lbj+1 I 12b. + Ajbj-l/Pj ) (21b - Aj lbj_ )/i
(14)

s (2-A.)1b I/m j lb j(1 + U.)/j • 2 for j < ibimilarly ' ' ''

(14') Ibj_ 1I > 21bjl for j > i .

In particular, lbi_1 1 4 Ibh. and lbi+If I lbI. In connection with (12) we obtain

I - AibiI + 2b i + Uibi+ 1 = lxIbi_1 + 2b.i + Pibi+i I

(15)

• 2IbiI - Ibi_11 - 0,1b,+1 1 A (2 - A. - A)JIb I = Io l

-4-



This proves (8) ror j i. For j 0 1, (8) comes from (14), (14') and (15). For the

rest of the proof we may assume j < . without any loss. To prove (9) we argue

indirectly. If b30 bjo+ ) 0 for some j. 
< 

i, then

lb. I > J b I- 12b. + U b I # 21b I
bu_ 1 b3 o 1 230 o bju +1 20

Comparing the above inequality with (13), we must have b 0 for all j( ij0  It would

cause all b = 0, which is absurd. Now we can write down

(ib) -b /b I: 2 + 2q! for j < i
3+1 j I

with q! 0. Let q hj+1 /hj. We deduce from (12) that, for j < i-1,
I

b. 2b + X. b.x b. -:1±2 +1 j+ 3 2 + 1,,2+ q q -

b. jj b Pi b j+1 + +1 2+2q!
j+1 3+1 j+1 j+ +1 bj+ l  

2

4ql + 3
2+2j+1 2(2+2q j+1 4q! + 4

This shows that

4q! + 3
(17) c =q - 3 for j < i-1+1 qj+l 4q! + 4

Let
4q, + 4

Pj 4q! + 3- j

It is easy to verify that

(19) 2 + 2q! - 1 + p. + + p 2

Now (1l) and (19) give us

i-1 i-1 i-1

(20) ibj = I l b /b - (2 + 2qk') (1 + p + 1 + P 
+ 

p2
kk kj kj k

It follows from (17) and (18) that

i-1 i-I 4q' + 4 i-i 4q +4 4q'_ + 3
k 4q' + k 4q + 3 4qk_ +4 k
1k] k-3' k.) _k k- 4

(21)

4q1_ + 4 4 i-1 i-I

4q!_ + 3 4q'_ + 4 k n j 3
II -I Ik j k II2



If t satisfies (8) and jli-iJ r, then

i-1 3 ii-I
(22) Ri p - 2

k-j Pk 4 h 1 4 3 0 0

Therefore lemma 1 will he proved, once the following lemma is established:

Lemma 2. Suppose P11... '/1 and p are nonnegative real numbers with pn =

PlP2° . °PnO Then

S( i P 1+ i + 1 P + + p +

i-1

Proof. Let

F(p 1 **pp += X 2
Ip, . l " l n ,- (1 + p1  1 + Pi + P )

i-I

n
We want to determine the minimnm of the function F under the constraint a Pi C,

i-1
where c is a constant, c - pn* If some pi J (2+2p)no then

n

F(pl,..'pn) ) (2 + 2p)n , 1 (1 + P + /1 + p + P2)n ; inf (F(Pl,**.p

Hence
inf {F(P,...,pn)) - inf {F(p 1,.,.pn))Upi-C Ap.-

Vi,pi,.12+2p)n

0 0 n 0 0 0
Thus there exists a point (pl,...,pn  with 1 Pt - c such that F(p1,...,p)

0 0 iIinf {F(p 1 ... pn)). To find (p0 ....p) we shall use the method of Lagrange

multipliers and set

(pl,.-.pn) :=F(Pl,..*pn) -~ p... pn•

Then 3 i 0 0 0, 1 - 1,...,n; that is

/, 0 o
j(i 2 + P0+(p0)2 j.i

It follows that0

nn

+-2
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F

Therefore

(23) f(p 0 1(p 0 tor all i. k Q (1,...,n)
i Pk

where

f(x) 2f1+ x + x I+ X
2x ._2

I + x + x+X 2/1 + x + x 2

An easy calculation yields

3(x + 1 )
(24) f'(x) 2 > 0 for x - 0

4(1 + x + x2)
3/ 2

This shows that f is strictly increasing on [0,-). Thus (23) and (24) give

0 0
p1  Pn = p

This ends the proof of lemma 2. Also the proof of lemma I is complete.

4. The proof of theorem 1. By the hypothesis (2) there exist a positive integer r

and a real number m0  with m < mo < - such that

3 Ii-j I
h /h 4 m whenever ji-3 I > r

Then by lemma 1,

K ~ 2Ii if fi-jI <r
(25) Vi, j G Z, IA- (j,i)I 4 2

(1 + m + /1 + 1+ 2)+ m io if i-j I r
0 0 0

Let

M := (mt)r <

t

and

Yi - Yi- + yi+1  - Yi
ci 3 hi + P3i  ,iZ

Then it follows that

(26) s'(t,) = A- (,i)C - ) A-j,i)c. + X A-l(j.i)c.
ie3 li-jl<r ' Ii-ilr

By the hypotheses of theorem I we have the following estimates for ci

1L



I c I .b - yl. (1444) * 6tj-4) II if Ij-il r

j 1,3
I • • 1 h i-jj

27)Id If. 6 . fly * (1+) . b(.+M) ly I. if )-il r
J0

write

= + I + T + R-I + m-2)_

Then 8 < 1 as long as m 3+'- Applying (25) and (27) to (26), we obtain
2

1 1 C 61(i+14) - Ny5 .--. 2-Ii-jl + 6(1+m1)1y1I h _ 1)r

(28)

4 COnst * lyl. h

Furthermore (6) tells us

max Is(x)I const(hj. 1Is'(tj,)l + h. •l'(t )I + NyU,)

t J-1 ti-_i xtj

which in connection with (28) yields the desired result

lei. 4 const * yE.

Our proof is complete.

j '9
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